terça-feira, 14 de outubro de 2014

Dado, Informação, Conhecimento e Competência

Dado, Informação, Conhecimento e Competência

Valdemar W. Setzer

Depto. de Ciência da Computação, Universidade de São Paulo
vwsetzer@ime.usp.br

(Trecho do Artigo. Seções 1, 2, 3 e 4)


1. Introdução

O que é "ser competente em inglês"? O leitor deveria tentar responder a essa pergunta antes de prosseguir na leitura deste artigo. Seria interessante tomar nota de sua resposta, para compará-la com o que virá adiante.
Fiz essa pergunta a vários profissionais de Tecnologia de Informação (T.I.), durante entrevistas para levantamento de suas competências. As respostas variavam desde "ter fluência nessa língua" até "saber pensar em inglês". Razoavelmente vagas, não é verdade? Pois problema de caracterizar claramente o que se deve compreender como "competência" foi o primeiro que enfrentei ao receber a encomenda de organizar um Centro de Competências em T.I. para a grande empresa de engenharia PROMON. A literatura não ajudou: logo vi que há uma confusão muito grande entre "conhecimento" e "competência". Pior, tendo chegado ao problema de distinguir entre esses dois conceitos, a literatura ajudou a confundir ainda mais as coisas, pois havia uma grande confusão entre "informação" e "conhecimento". Ao chegar em "informação", foi necessário distingui-la de "dado", mas aí defrontei-me com um conceito sobre o qual já elaborado. Seguirei aqui, então, o caminho inverso, desde "dado" até competência.
Seria também interessante que o leitor procurasse neste ponto dar sua caracterização do que entende por "informação" e "conhecimento". Mas não pense que sua provável dificuldade não é comum: por "coincidência", durante os estudos para conceituar esses termos, saiu o número 81 de 10/8/98 da excelente revista eletrônica Netfuture, sobre tecnologia e responsabilidade humana; nele, seu editor Stephen Talbott descreve que, em duas conferências dadas para bibliotecários, com grandes audiências, ao perguntar o que entendiam por "informação", ninguém arriscou qualquer resposta [Talbott].
Este artigo inicia com a definição do que vem a ser "dado", para daí partir para a caracterização (e não definição, como se verá) de "informação", seguindo-se "conhecimento" e "competência". Ver-se-á que minha conceituação de "competência" depende de dois fatores, levando a uma representação matricial, a "matriz de competências". Depois de considerações gerais sobre esses conceitos, e uma discussão da literatura, é descrito como eles foram usados na implantação de dois sistemas de gerenciamento de competências, na PROMON Engenharia e na PRODESP (Companhia de Processamento de Dados do Estado de São Paulo), com levantamento das competências de cerca de 100 profissionais, até o momento da revisão deste artigo. Finalmente, são feitas considerações sobre a implantação de Centros de Competência.


2. Dado


Defino dado como uma seqüência de símbolos quantificados ou quantificáveis. Portanto, um texto é um dado. De fato, as letras são símbolos quantificados, já que o alfabeto, sendo um conjunto finito, pode por si só constituir uma base numérica (a base hexadecimal emprega tradicionalmente, além dos 10 dígitos decimais, as letras de A a E). Também são dados fotos, figuras, sons gravados e animação, pois todos podem ser quantificados a ponto de se ter eventualmente dificuldade de distinguir a sua reprodução, a partir da representação quantificada, com o original. É muito importante notar-se que, mesmo se incompreensível para o leitor, qualquer texto constitui um dado ou uma seqüência de dados. Isso ficará mais claro no próximo item.
Com essa definição, um dado é necessariamente uma entidade matemática e, desta forma, é puramente sintático. Isto significa que os dados podem ser totalmente descritos através de representações formais, estruturais. Sendo ainda quantificados ou quantificáveis, eles podem obviamente ser armazenados em um computador e processados por ele. Dentro de um computador, trechos de um texto podem ser ligados virtualmente a outros trechos, por meio de contigüidade física ou por "ponteiros", isto é, endereços da unidade de armazenamento sendo utilizada, formando assim estruturas de dados. Ponteiros podem fazer a ligação de um ponto de um texto a uma representação quantificada de uma figura, de um som, etc..
O processamento de dados em um computador limita-se exclusivamente a manipulações estruturais dos mesmos, e é feito por meio de programas. Estes são sempre funções matemáticas, e portanto também são "dados". Exemplos dessas manipulações nos casos de textos são a formatação, a ordenação, a comparação com outros textos, estatísticas de palavras empregadas e seu entorno, etc.

3. Informação

Informação é uma abstração informal (isto é, não pode ser formalizada através de uma teoria lógica ou matemática), que está na mente de alguém, representando algo significativo para essa pessoa. Note-se que isto não é uma definição, é uma caracterização, porque "algo", "significativo" e "alguém" não estão bem definidos; assumo aqui um entendimento intuitivo (ingênuo) desses termos. Por exemplo, a frase "Paris é uma cidade fascinante" é um exemplo de informação – desde que seja lida ou ouvida por alguém, desde que "Paris" signifique para essa pessoa a capital da França (supondo-se que o autor da frase queria referir-se a essa cidade) e "fascinante" tenha a qualidade usual e intuitiva associada com essa palavra.
Se a representação da informação for feita por meio de dados, como na frase sobre Paris, pode ser armazenada em um computador. Mas, atenção, o que é armazenado na máquina não é a informação, mas a sua representação em forma de dados. Essa representação pode ser transformada pela máquina, como na formatação de um texto, o que seria uma transformação sintática. A máquina não pode mudar o significado a partir deste, já que ele depende de uma pessoa que possui a informação. Obviamente, a máquina pode embaralhar os dados de modo que eles passem a ser ininteligíveis pela pessoa que os recebe, deixando de ser informação para essa pessoa. Além disso, é possível transformar a representação de uma informação de modo que mude de informação para quem a recebe (por exemplo, o computador pode mudar o nome da cidade de Paris para Londres). Houve mudança no significado para o receptor, mas no computador a alteração foi puramente sintática, uma manipulação matemática de dados.
Assim, não é possível processar informação diretamente em um computador. Para isso é necessário reduzi-la a dados. No exemplo, "fascinante" teria que ser quantificado, usando-se por exemplo uma escala de zero a quatro. Mas então isso não seria mais informação.
Por outro lado, dados, desde que inteligíveis, são sempre incorporados por alguém como informação, porque os seres humanos (adultos) buscam constantemente por significação e entendimento. Quando se lê a frase "a temperatura média de Paris em dezembro é de 5oC" (por hipótese), é feita uma associação imediata com o frio, com o período do ano, com a cidade particular, etc. Note que "significação" não pode ser definida formalmente. Aqui ela será considerada como uma associação mental com um conceito, tal como temperatura, Paris, etc. O mesmo acontece quando se vê um objeto com um certo formato e se diz que ele é "circular", associando – através do pensar – a representação mental do objeto percebido com o conceito "círculo". Para um estudo profundo do pensamento, mostrando que quanto à nossa atividade ele é um órgão de percepção de conceitos, veja-se uma das obras fundamentais de Rudolf Steiner, A Filosofia da Liberdade, especialmente o cap. IV, "O mundo como percepção" [Steiner 2000 pg. 45].
A informação pode ser propriedade interior de uma pessoa ou ser recebida por ela. No primeiro caso, está em sua esfera mental, podendo originar-se eventualmente em uma percepção interior, como sentir dor. No segundo, pode ou não ser recebida por meio de sua representação simbólica como dados, isto é, sob forma de texto, figuras, som gravado, animação, etc. Como foi dito, a representação em si, por exemplo um texto, consiste exclusivamente de dados. Ao ler um texto, uma pessoa pode absorvê-lo como informação, desde que o compreenda. Pode-se associar a recepção de informação por meio de dados à recepção de uma mensagem. Porém, informação pode também ser recebida sem que seja representada por meio de dados mensagens. Por exemplo, em um dia frio, estando-se em um ambiente aquecido, pondo-se o braço para fora da janela obtém-se uma informação – se está fazendo muito ou pouco frio lá fora. Observe-se que essa informação não é representada exteriormente por símbolos, e não pode ser denominada de mensagem. Por outro lado, pode-se ter uma mensagem que não é expressa por dados, como por exemplo um bom berro por meio de um ruído vocal: ele pode conter muita informação, para quem o recebe, mas não contém nenhum dado.
Note-se que, ao exemplificar dados, foi usado "som gravado". Isso se deve ao fato de os sons da natureza conterem muito mais do que se pode gravar: ao ouvi-los existe todo um contexto que desaparece na gravação. O ruído das ondas do mar, por exemplo, vem acompanhado da visão do mar, de seu cheiro, da umidade do ar, da luminosidade, do vento, etc.
Uma distinção fundamental entre dado e informação é que o primeiro é puramente sintático e a segunda contém necessariamente semântica (implícita na palavra "significado" usada em sua caracterização). É interessante notar que é impossível introduzir e processar semântica em um computador, porque a máquina mesma é puramente sintática (assim como a totalidade da matemática). Por exemplo, o campo da assim chamada "semântica formal" das "linguagens" de programação, é de fato, apenas um tratamento sintático expresso por meio de uma teoria axiomática ou de associações matemáticas de seus elementos com operações realizadas por um computador (eventualmente abstrato). De fato, "linguagem de programação" é um abuso de linguagem, porque o que normalmente se chama de linguagem contém semântica. (Há alguns anos, em uma conferência pública, ouvi Noam Chomsky – o famoso pesquisador que estabeleceu em 1959 o campo das "linguagens formais" e que buscou intensivamente por "estruturas profundas" sintáticas na linguagem e no cérebro –, dizer que uma linguagem de programação não é de forma alguma uma linguagem.) Outros abusos usados no campo da computação, ligados à semântica, são "memória" e "inteligência artificial". Não concordo com o seu uso porque nos dão, por exemplo, a falsa impressão de que a memória humana é equivalente em suas funções aos dispositivos de armazenamento dos computadores, ou vice-versa. Theodore Roszack faz interessantes considerações mostrando que nossa memória é infinitamente mais ampla [Roszack 1994 pg. 97]. John Searle, o autor da famosa alegoria do Quarto Chinês (em que uma pessoa, seguindo regras em inglês, combinava ideogramas chineses sem entender nada, e assim respondia perguntas – é a assim que o computador processa dados), demonstrando que os computadores não possuem qualquer entendimento, argumentou que os computadores não podem pensar porque lhes falta a nossa semântica [Searle 1991 pg. 39].
A alegoria de Searle sugere um exemplo que pode esclarecer um pouco mais esses conceitos. Suponha-se uma tabela de três colunas, contendo nomes de cidades, meses (representados de 1 a 12) e temperaturas médias, de tal forma que os títulos das colunas e os nomes das cidades estão em chinês. Para alguém que não sabe nada de chinês nem de seus ideogramas, a tabela constitui-se de puros dados. Se a mesma tabela estivesse em português, para quem está lendo este artigo ela conteria informação. Note-se que a tabela em chinês poderia ser formatada, as linhas ordenadas segundo as cidades (dada uma ordem alfabética dos ideogramas) ou meses, etc. – exemplos de processamento puramente sintático.

4. Conhecimento


Caracterizo Conhecimento como uma abstração interior, pessoal, de algo que foi experimentado, vivenciado, por alguém. Continuando o exemplo, alguém tem algum conhecimento de Paris somente se a visitou. Mais adiante essa exigência será um pouco afrouxada (V. item 5).
Nesse sentido, o conhecimento não pode ser descrito; o que se descreve é a informação. Também não depende apenas de uma interpretação pessoal, como a informação, pois requer uma vivência do objeto do conhecimento. Assim, o conhecimento está no âmbito puramente subjetivo do homem ou do animal. Parte da diferença entre estes reside no fato de um ser humano poder estar consciente de seu próprio conhecimento, sendo capaz de descrevê-lo parcial e conceitualmente em termos de informação, por exemplo, através da frase "eu visitei Paris, logo eu a conheço" (supondo que o leitor ou o ouvinte compreendam essa frase).
A informação pode ser inserida em um computador por meio de uma representação em forma de dados (se bem que, estando na máquina, deixa de ser informação). Como o conhecimento não é sujeito a representações, não pode ser inserido em um computador. Assim, neste sentido, é absolutamente equivocado falar-se de uma "base de conhecimento" em um computador. O que se tem é, de fato, é uma tradicional "base (ou banco) de dados".
Um nenê de alguns meses tem muito conhecimento (por exemplo, reconhece a mãe, sabe que chorando ganha comida, etc.). Mas não se pode dizer que ele tem informações, pois não associa conceitos. Do mesmo modo, nesta conceituação não se pode dizer que um animal tem informação, mas certamente tem muito conhecimento.
Assim, há informação que se relaciona a um conhecimento, como no caso da segunda frase sobre Paris, pronunciada por alguém que conhece essa cidade; mas pode haver informação sem essa relação, por exemplo se a pessoa lê um manual de viagem antes de visitar Paris pela primeira vez. Portanto, a informação pode ser prática ou teórica, respectivamente; o conhecimento é sempre prático.
A informação foi associada à semântica. Conhecimento está associado com pragmática, isto é, relaciona-se com alguma coisa existente no "mundo real" do qual se tem uma experiência direta. (De novo, é assumido aqui um entendimento intuitivo do termo "mundo real".).

(....)

Referências

Cusumano, M. e R.W. Selby. How Microsoft Builds Software. Communications of the ACM Vol. 20, No. 6, June 1997, pgs 53-61.
Davenport, T.H. e L. Prusak. Working Knowledge: how Organizations Manage what they Know. Boston: Harvard Business Scholl Press, 1998.
Devlin, K. Infoscience: Turning Information into Knowledge. New York: W.H. Freeman, 1999.
Goleman, D. Inteligência Emocional: A Teoria Revolucionária que Redefine o que é Ser Inteligente (trad. M. Santarrita). Rio de Janeiro: Ed. Objetiva, 1995.
MIT I/T Competence Model. Disponível em http://web.mit.edu/is/competency.
Malhorta, Y. Tools@Work: Deciphering the Knowledge Management Hype. Journal of Quality and Participation, special issue on Learning and Information Management, Vol. 21, No. 4, July/August 1998, pgs. 58-60.
Roszak, T. The Cult of Information: A Neo-Luddite Treatise on High-Tech, Artificial Intelligence, and the True Art of Thinking. Berkeley: University of California Press, 1994.
Searle, J. Minds, Brains & Science: the 1984 Reith Lectures. New York: Penguin Books, 1991.
Steiner, R. A Filosofia da Liberdade: Fundamentos para uma Filosofia Moderna – Resultados com Base na Observação Pensante, Segundo o Método das Ciências Naturais, GA 4. São Paulo: Ed. Antroposófica, 2000.

Talbott, S.L. (ed.). Netfuture: Technology and Human Responsibility. Revista eletrônica, todos os números disponíveis em www.netfuture.org.

3 comentários:

  1. Ótimo texto, porem achei que deveria ter o topico de competência, porém, entendo que satisfaz a demada da proxima aula:dados, informacao e conhecimento, todavia ao ler o texto venho a mim uma pergunta: como entender uma era que se intitula ou busca ser uma era do conhecimento, porem vivi a epoca da procura da exatidao e compreensao dos dados posto de sua busca? Seria incorência dizer era do conhecimento, mas sim de uma era se dados e informacão?!
    Att,
    leo

    ResponderExcluir
  2. Eu também fiquei esperando uma conclusão sobre competência no final.

    ResponderExcluir
  3. Prezados,

    no post só há as seções 1, 2, 3 e 4. Nós abordaremos o restante do artigo. :-)

    Um abraço,
    Douglas M.

    ResponderExcluir